
JuliaHEP 2025

HepMC3.jl - Julia Interfaces to
HepMC3 Event Record Library

Divyansh-Goyal
Guru-Gobind-Singh-Indraprastha-University
 28 July 2025

https://github.com/JuliaHEP/HepMC3.jl

Mentor: Graeme-A-Stewart

https://github.com/JuliaHEP/HepMC3.jl

Motivation → Why HepMC3 Fits
❖

2

Julia is a priori a good programming language candidate for HEP

It combines high-level expressibility for scientific computational
problems together with high-performance execution, avoiding the
two language problem

One essential aspect is to improve interoperability with existing
C++ libraries in HEP

HepMC3 files are a defacto standard for event generator outputs.
Julia support to read these files would be a valuable addition to the
JuliaHEP toolbox.

❖

❖

❖

❖

❖

Similarly to Python, to call C++ from Julia you need to write (better
generate) wrappers for each method you want to offer to Julia

Using the CxxWrap.jl package

❖

Julia wrappers to HepMC3

❖

❖

 The user needs to write a small code (in C++) to wrap each class and method

(similar to pybind11 or Boost.Python)
The package WrapIt developed by

Philippe Gras makes use of LLVM

libraries to generate the wrappers

automatically

❖

3

HepMC3.jl: Basic Interface
❖

❖ All HepMC3 functions maintain

descriptive names -

make_shared_particle(), set_units!(),

get_particle_properties() providing clear,

Julia-style API, also easy for someone

familiar with HepMC3 to use

❖ Direct C++ object manipulation

through shared pointers - Functions return

Ptr{Nothing} handles for efficient memory

management and performance

❖ Sometimes native Julia types require

extraction - Particle properties accessed

via get_particle_properties(particle_ptr)

returning named tuples with physics data

7

Package Structure

❖ The package HepMC3.jl is a Julia package (platform dependent with
custom C++ bindings)
The binary libraries (platform dependent) for HepMC3 and the custom
wrapper library are built using manual C++ implementation and linked with
the HepMC3_jll package binaries from Julia infrastructure (GitHub)

❖

5

HepMC3

CxxWrap

HepMC3_julia_jll
(Planned Release) HepMC3_jll

Julia

https://github.com/JuliaHEP/HepMC3.jl

C++

libHepMC3Wrap.so
exports.jl

C++

libHepMC3.so
... +datafiles

...

CodecZstd_jll

Test_jll

https://github.com/JuliaHEP/HepMC3.jl

HepMC3.jl: Implementation Workflow
❖

7

❖ Veto File Creation - Exclude problematic C++ constructs (std::shared_ptr,

std::vector<GenParticlePtr>, complex containers) from auto-generation

❖ WrapIt! Configuration - Auto-generate Julia bindings from HepMC3

headers with vetoed functions excluded (GenEvent, GenParticle, FourVector

classes)

❖ Custom C++ Implementation - Write dual-type wrapper functions

(particles_size vs particles_size_raw) for shared_ptr/raw pointer

compatibility

❖ Library Rebuilding - Compile hybrid libHepMC3Wrap.so with automatic

CxxWrap binding generation for new manual C++ functions

❖ Julia Interface Layer - Create method dispatch routing GenEvent objects

to _raw functions, Ptr{Nothing} to shared_ptr functions

❖ Integration Testing - Validate JetReconstruction.jl pipeline (100 events)

and comprehensive test suite (156 tests passing)

❖ Platform Specification - Verified on x86-64 Linux systems with Ubuntu/

Arch compatibility

HepMC3.jl: Problems Faced & Solutions
❖

Problem 1: Single JLCXX Module Limitation

❖ Challenge - CxxWrap libraries can only define one jlcxx module per shared library, preventing separate

manual wrapper modules

❖ WrapIt! Limitation - Auto-generated code creates the primary jlcxx module, blocking additional manual

module definitions

❖ Solution Strategy - Let WrapIt! generate the main jlcxx module, then inject custom functions via

add_manual_hepmc3_methods()

❖ Implementation - Add custom C++ wrapper functions to existing module through library source

patching

❖ Rebuild the library - Now, rebuild the library with the applied patch.

7

HepMC3.jl: Problems Faced & Solutions
❖

Problem 2: Dual Pointer Type Compatibility Crisis

❖ Challenge - JetReconstruction.jl pipeline expected shared_ptr<GenEvent>* input while test suite

used GenEvent.cpp_object (raw GenEvent* pointers)

❖ Memory Corruption - Type casting mismatches caused crashes (std::bad_alloc), garbage return

values (particles_size() = -1), and segmentation faults

❖ Incompatible Use Cases - Single function implementations couldn't serve both:

File reader → Ptr{Nothing} → shared_ptr functions (JetReconstruction path)

GenEvent objects → .cpp_object → raw pointer functions (test path)

❖ Failed Attempts - Changing input casting broke one pipeline while fixing the other, creating zero-

sum compatibility issue

❖ Solution Architecture -Dual C++ function implementation

7

HepMC3.jl: basic tree example success
❖

7

HepMC3.jl:

final state
particles for
Jet
Reconstruction
 ❖

7

HepMC3.jl: final state particles for
JetReconstruction
❖

7

Conclusions
❖

❖ HepMC3.jl is in early development and accomodate plans with
comprehensive functionality for high-energy physics event processing

❖ The package can be a very useful addition to the Julia HEP ecosystem
enabling seamless integration with JetReconstruction.jl and physics analysis
workflows

❖ Julia BinaryBuilder and CxxWrap are powerful tools to streamline
installation and deployment of complex C++ physics libraries like HepMC3

❖ Dual pointer architecture proved essential for HepMC3 compatibility -
measured zero performance overhead between shared_ptr and raw pointer
paths

23

If you want to try... (on x86 linux)

3.

4.

install Julia version > 1.9

run an example (e.g. Jet Reconstruction event structs)

2. clone HepMC3.jl for the examples (Make sure to also clone and install JetReconstruction.jl)

install locally all the needed packages and dependencies by the examples

•

•

just download the binary (

include in PATH the

) and ithttps://julialang.org/downloads

julia-1.9.3/bin directory

git clone https://github.com/JuliaHEP/HepMC3.jl.git

cd HepMC3.jl

julia --project=. -i examples/test_jetreconstruction_pipeline.jl

julia --project=. -e 'import Pkg; Pkg.instantiate()’

untar

•

•

•

•

24

1.

https://github.com/JuliaHEP/Geant4.jl.git
https://github.com/JuliaHEP/Geant4.jl.git

