Adopting CpplinterOp in cppyy

Contact Details

Name: Vipul Cariappa
Email: vipulcariappa@gmail.com
GitHub: https://github.com/Vipul-Cariappa/
Website: https://www.vipulcariappa.xyz/
Resume: https://www.vipulcariappa.xyz/assets/My-Resume.pdf
Timezone: India Standard Time (GMT+5:30)
Supervisors:
- Dr. Vassil Vassilev (Princeton University, USA), vvasilev@cern.ch
- Dr. S M Hari Krishna (Ramaiah University of Applied Sciences, India),
harikrishna.cs.et@msruas.ac.in

About My Project

Abstract

cppyy is a Python library that provides fully automatic, dynamic Python-C++ bindings using the
cling based C++ interpreter/incremental compiler. Cling itself is based on the LLVM toolchain.
Compiler Research maintains its own fork of cppyy. The main motivation of this fork is to directly
use the LLVM’s clang-REPL as C/C++ interpreter/incremental compiler and runtime reflection
library. This reduces the burden on the developers to maintain a separate fork of LLVM like the
cling interpreter. The Compiler Research’s cppyy fork’s migration to using the upstream
clang-REPL is an ongoing effort. The migration is incomplete, and many features are missing in
the Compiler Research’s fork. | aim to implement as many of these missing features as possible
to complete the transition to using the clang-REPL compiler backend.

Once we get most of the high priority features working using the clang-REPL backend, | plan on
implementing a multi-language Jupyter kernel on top of xeus-cpp. This multi-language kernel
will support using both C++ and Python for code execution and will provide the ability for the
users to seamlessly use symbols defined in each other.

The compiler research’s fork of cppyy, uses LLVM clang-REPL through the CpplinterOp library.
CpplnterOp is developed and maintained by compiler research. It is a high level abstraction of
the underlying LLVM API. CppinterOp is designed to be simple and minimalistic. It is built for the
purpose of language interoperability, incremental C++ compilation, and runtime C++ reflection.
During this process of migration from using the cling backend to CpplinterOp, we will also be
extending CpplnterOp’s feature set.

mailto:vipulcariappa@gmail.com
https://github.com/Vipul-Cariappa/
https://www.vipulcariappa.xyz/
https://www.vipulcariappa.xyz/assets/My-Resume.pdf
mailto:vvasilev@cern.ch
mailto:harikrishna.cs.et@msruas.ac.in
https://github.com/wlav/cppyy
https://github.com/compiler-research/cppyy
https://github.com/compiler-research/xeus-cpp

Some of the missing features in the cppyy are;
- Use of smart pointers like std: :unique_ptr and std: :shared_ptr.
- Usability of Templated classes and functions.
- Lookup of anonymous fields and enums, global operators, and overloaded functions and
methods
- Ability to run multi-threaded or multi-processed code.
- Cross-Exception handling

As we are adapting an existing code base to work with a different backend library, we will also
need to rethink the methodology behind the optimizations that were previously built in. For
example; the caching mechanism fails more than 50% of the time, which leads to increased
memory usage and memory leaks, and time spent on creating new objects.

xeus-cpp is a Jupyter Kernel for C++. It uses CpplnterOp library for incremental compilation and
execution of code. The idea behind the multi-language kernel is to use both Python and C++ in
a single notebook. The end user should be able to use symbols across languages seamlessly.
The kernel would be responsible for any necessary type conversions.

Cppyy can be used for this purpose. It already has the necessary building blocks for incremental
compilation and interoperability with Python. We would adapt xeus-cpp to integrate with cppyy
for the Python code execution.

Cppyy can not resolve functions and classes defined in Python for use in C++, we will require a
new mechanism to resolve the symbols defined in Python to be used in C++. We will also need
to factor in the differences in the type systems of the two languages for a seamless end user
experience.

Benefit to the Community

If we complete the migration to clang-REPL we will not be required to maintain a separate
LLVM’s fork, which we do through cling. We can directly use the upstream LLVM, and use all of
its new features, speed improvements, and bug fixes. The current implementation of cppyy
using the cling library for C++ interpretation uses lots of string manipulation. This string
manipulation increases the performance overhead and affects the code readability and
debuggability. While using clang-REPL, these string manipulations can be avoided, mitigating
the drawbacks mentioned.

Python is the go-to language for data science and machine learning. But Python is slow
because it is interpreted and dynamically typed. Whereas C++ is compiled and statically typed,
C++ offers much better performance than Python. Most of the compute intensive Python
libraries are written in C/C++ or Fortran. Building a multi-language Jupyter kernel will provide
users with the advantages of both worlds. Easy to write Python, and performance of C++.

Tentative Timeline

| will approximately be spending 40 hours a week on this project.

Week 1 & 2: Implement the necessary changes/features to enable the lookup of
anonymous fields and enums, global operators, and overloaded functions and methods.
Week 3 & 4: Implement the necessary features to use templated functions and classes
Week 5 & 6: Implement the necessary feature to use C++ smart pointers. Then extend
the work to include the use of other templated classes and functions from the Standard
Template Library (STL).

Week 7 & 8: Work on features related to cross-inheritance, i.e. inheriting from C++ class
in Python.

Week 9 & 10: Make cppyy and CpplnterOp thread-safe to enable multi-threading and
multi-processing workflows.

Week 11 & 12: Work on xeus-cpp, implementing the multi-language kernel.

The above mentioned timeline should be considered as an estimate.

Note: Work on CpplinterOp will be prioritized over the multi-language Jupyter Kernel.

Work done so far

Fixed an issue in CpplnterOp related to a missing feature; to get the include paths;
through this PR.

Implemented the ability to lookup anonymous enum constants (PR).

Implemented the ability to lookup data members/fields of anonymous struct and
union (PR).

Implemented the ability to read and write to static class fields/data members (PR).

Biographical Information

I am currently pursuing my bachelor's degree in computer science and engineering in
Bangalore, India. | am a two time GSoC contributor. In 2023, | contributed to GNU Octave.
Octave is a programming language designed for compute intensive and scientific applications.
My project was on interoperability between Octave and Python programming languages. In
2024, | contributed to LPython under the Python Software Foundation. LPython is a statically
typed, compiled version of Python. | built a REPL (read-evaluate-print-loop) shell for LPython,
Jupyter Kernel, and worked on interoperability with CPython.

https://github.com/compiler-research/CppInterOp/issues/69
https://github.com/compiler-research/CppInterOp
https://github.com/compiler-research/CppInterOp/pull/311
https://github.com/compiler-research/CPyCppyy/pull/61
https://github.com/compiler-research/CppInterOp/pull/321
https://github.com/compiler-research/CppInterOp/pull/322

